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The onset of auto-oscillations at transition of the Reynolds number (or any other 
parameter defining the steady motion of a viscous incompressible fluid) through 

its critical value is investigated. 
Landau in Cl] (see, also, @, 31) considered the onset of the periodic auto- 

oscillation mode to be the first stage of transition from a laminar to a turbulent 

flow of a fluid. His method, developed also by Meksyn.Stuart and Watson (see 
[4-7]), implies the knowledge of the eigenvectors of the linearized (with respect 

to the basic laminar mode at a given Reynolds number) Navier-Stokes operator 

to which (according to the linear theory) correspond increasing perturbations. A 
system of ordinary nonlinear differential equations is derived for the determina- 

tion of the Fourier coefficients of the velocity field. The calculation of the 

right-hand sides of equations of this system is, however, somewhat involved. 

Owing to this, this method had not, so far, provided final results in specific cases, 

such as, for example, the Poiseuille flow in a channel. The Landau method is 
clearly more suitable for investigating the onset of a periodic mode rather than 

for the calculation of a stabilized one. 
Here the onset of auto-oscillations is analyzed by the Liapunov-Schmidt me- 

thod described in [8, 91. The branching out of periodic solutions of systems of 
ordinary differential equations is considered in [ 101, where references to earlier 

works are cited. The generation of a cycle is considered in [lo, 111 for a system 
of ordinary differential equations, while [12-541 deal with the special case of 

Galerkin equations approximating the Navier-Stokes system. Certain statements 

related to the complete Navier-Stokes equations are also formulated in [13, 14s 
A comprehensive statement of the problem and basic definitions are given in 

Sect. 1; an a priori estimate of possible auto-oscillation modes is presented 

(Lemma 1.2), and it is shown that only the critical value of a parameter can be 
a point of branching out of the system (Lemma 1.3). 

This is followed by the analysis of supplementary conditions for the actual 
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generation of a cycle. Theorem 2.1, which is an analogy of Krasnosel’skii’s 

theorem on bifurcation [15]. is proved in Sect. 2. The existence of periodic 
auto-oscillatory motion under conditions of Theorem 2.1 is established by the 

analysis of linear equations only, independently of the form of nonlinear terms. 

A more detailed analysis of generated cycles, of their number and analytic 

properties is given in Theorem 2.2 and related notes in terms of parameter y.. 

Since the proofs of Theorems 2.1 and 2.2 are based on the most general pro- 
perties of Navier-Stokes equations, these theorems can be readily extended to 
a wide class of ordinary differential equations in a Banach space (see Theorems 

3.1 and 3.2 in Sect. 3) which comprise, in particular, problems involving equa- 
tions of the parabolic kind, equations of convection, magnetohydrodynamics, etc. 

1. Exirtence of ruto-orcillrtionr. Strtemant of the problem. 
Let a homogeneous viscous incompressible fluid fill the bounded region !? of a three- 
dimensional Euclidean space (*). Let us assume that the vectors of mass forces and of 

velocity at the boundary S of region 52 are specified and, while being independent of 
time, depend on a certain parameter y. 

Let there exist a stationary solution of the Navier-Stokes equations (n (.c, -,‘), 1’” (x, q’)) 

which we shall call in the following the fundamental solution. 

We denote by I’,, the critical value of parameter? , when for y = TO the stability 
spectrum of the basic flow has a nonempty intersection with the imaginary axis. 

If for y = PO the stability spectrum contains zero, the passage of parameterI, through 
the critical value y,, results, as a rule, in the branching out of new stationary modes (see 
[ 16-181). However here we consider the case in which at y = ~a the stability spect- 

rum contains a pair of purely imaginary eigenvalues r io, (0 s # 0). In this case 
the linearized system has a periodic solution, and it can be expected that for 1’ close to 

I’o there exists a periodic auto-oscillatory solution of nonlinear Navier-Stokes equations. 
The conditions for an actual occurrence of this are given later. 

The stability spectrum of the auto-oscillatory mode for Y close to sn contains points 
51,” close to qico o (these can be calculated by using series expansions of the pertur- 

bation theory). If these appear in the right-hand half-plane, the auto-oscillation is un- 
stable. It is, also, unstable, when for 1’ = y. the basic flow is unstable, and this mani- 

fests itself by the appearance in its stability spectrum of points of the right-hand half- 
plane. If, however, at ;‘ = SO all points of the basic flow stability spectrum, except 

Rio) o, lie within the left-hand half-plane and ]jc ~r,s < 0, the auto-oscillation mode 

is stable. 
Let us assume in what follows that s E Ca and that the dependence of vector a on 

v is analytic in the neighborhood of Ya 

a (x, T) = $j ak (4 ak9 6=Y--TO 
(1.1) 

and series (1.1) is convergent in 1%‘;‘). 
k=o 

Assuming that for any solution of the Navier-Stokes equations v’ and P’ are expressed 

bY v’=v_l-.a, P’ = q $- PO (1.2) 

*) Two- and n-dimensional cases are treated similarly. 
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we obtain for perturbations the nonlinear equation 

g + Av + jj 6'BkV = - h’v 
kc1 

(1.3) 

The following notation is used here: 

Kv = K,, (v, v), Ks0 (u, v) = IT (US v) v 

&I0 (u* v) = J&0 (u, v) -i- J&s (v, 4, Brv = K2s0(ah., v) (k =o, I,...) (I&) 

P=4+B,, A0 = --vFIA 

The operator 11 is the orthogonal projector in L, into the subspace and’fl = ss is the 
closure in L, of the set of smooth solenoidal vectors which vanish in the neighborhood 
of the boundary of region Q. 

The unknown cyclic frequency of the sought periodic solution of Eq, (1.3) will be 
denoted by o . Substituting 0 t = ‘F, we reduce Eq. (1.3) to the form 

m 

0 -$ + Av + 2 tik&V = - Kv 
k=l 

(1.5) 

Let us assume that a unique eigenvector cp of operator A corresponds to eigenvalue 
Aiws. Then the complex conjugate eigenvector ‘p* 

A~I + ioocp = 0, AT* - ioaq* = 0 (14 
corresponds to the eigenvalue ia,, . 

We introduce operator A* conjugate of operator A in Hwhose region of definition 

coincides with DA , and 
A* = A,, + Bo*, Bo*u = - (1.7) 

where e,, es and esare the coordinate unit vectors in R3. For any u, and v E DA 

we have the identity 
(Au, V)H = (u, A*v)H (1.8) 

The scalar product in His of the. form 

(u, V)H = 1 u*v*dz (1.9) 
n 

Operator A has a discrete spectrum whose resolvent is an absolutely continuous opera- 
tor in the energy space H, of operator A,,; each generalized eigenvector. cp belongs to 
DA,, and every eigenvalue of operator A is, also, the eigenvalue of the conjugate opera- 
tor A ** We denote the eigenvector of operator A *corresponding to the eigennumber iu+, 

by a>. We have 
A*@ - iw,<D = 0, A*@* + io@* = 0 (1.10) 

Let us assume that the eigenvalues Tim 0 are simple numbers ; this implies not only 

the uniqueness of related eigenvectors but, also, that (cp, <II), .# 0 . Hence it can be 
assumed that condition 

(cp,0)H = \cp.Q*dz= 1 (1.11) 

is satisfied. r; 

We look for nontrivial %-periodic solutions of Eq. (1.5) in the Hilbert space esof 
closure of the set of vector functions v (7) ; z E [O; 2n] such that Av Jr) and 
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dv (‘rl/& are strongly continuous along [O, 2d in the metric 

(1.12) 

Let the number Yodenote the point of branching out of a cycle, when there exist the 

sequence Yn -+ YO (6, = Y,, - yo-+.O) and the related sequenciesof numbers 

o,, #= 0 and vector functions U, E H2 with Y, # 0 which are solutions of Ee(1.5) 
for v, j 0 in H,. Let us assume that a normal cycle is branching out, when there 

exist one-parameter sets 8 Ir u,: V, E II, for ,v, + 0 (v # yo), continuous with 

respect ta y and satisfying Eq, (1.5). when y passes through a certain interval .! whose 
limitpointisl’oand,when ~v+oo#O with u.,--tO for Y+Yo.If or.-+0 

(o Y -Y co) with all other conditions satisfied, the cycle will be called slow (fait). - If 
the interval J can be chosen so as to comprise point yab, the cycle (whether normal, slow, 
or rapid) will be called two-sided. Otherwise the cycle will be called one-sided (*). 

In what follows we examine the conditions which must be satisfied, if y,-, is to be the 

branching out point of a cycle and, also, investigate the set of y and o for which Eq. 

(1.5) has a nontrivial solution. 
We introduce operator L : H2 + H’ = L2 ((0, h), H); on the assumption that 

for any vector function u E H2 

LU ~“,~fAU (1.13) 

Lemma 1.1. For operator L to be invertible it is necessary and sufficient that 

points ,inw, (n = 0, yl,... ) do not appear in the spectrum of operator A. 

Pro o f. It can be assumed that a0 > 0 (in the contrary case this can be achieved 
by the substitution o, y - o, and ‘c - - r). Let us consider equation 

(134) 

on the assumption that f E H’ . We shall prove that the problem of finding a 2+peri- 

odic solution of this equation reduces to a Fredholm equation of the second kind. For 
this we rewrite Eq, (1.14) in the form 

Lo”5~~+Aou=f-&u (1.15) 

It will be readily seen that operator L,, : H, + HI’ is invertible. The inverse operator 

may be presented in various forms t 

uo (1) = (~0-1~ (t) = &_ J 
-aD 

exp !I- &- (t - 7) ~01 t (7) d* = 

=s 

2% 

e”‘of (inml + ~$1 .& s f (T) eebr dr (1 .i6) 

n=-w 0 

*) This definition extends to the case in which the transition of parameter ‘v through 
the critical value ye results in the onset of.cycles of the two or, even. all three kinds 
described above. 
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Here Qk is the. complete system of eigenvectors (self-conjugate, positive definite, and 
having an absolutely continuous inverse) of operator Aa and A$ are the related eigen- 
values k$-.ca (k-a). According to the results in [ZO] we have 

Qk E w(*) 6% P 

Inversion of operator La reduces Eq, (1.15) 

u + L;lBou = uo, 

for p > i 

to the equivalent form 

uo = L,‘I (i.i8). 

Let us prove that.operator L,‘Bo : HI - H, is obsolutely continuous. In fact, it can 
be presented in the form L;‘B,JJ where J is the operator of imbedding of space Hs.into 
space at’ of an-periodic vector functions from L,((O, ~JC), H,). For any vector function 

co +Jo 
11 (f) = 2 2 CnkZi”f 

we have 
knln=-co 

flu&+= 27‘2 (tl%$+k.Jtl)l C,rI*, ,,“s”,,’ =znFk ‘kalC,,kl’ (1.19) 
n,k 

The criterion of compactness in I,’ implies thus that a sphere in space Ha is a compact 
ellipsoid in HI’. Hence operator. J : H, + Hi is absolutely continuous. Operator B, : 
: Hi* -, H’ is bounded. Taking into consideration its definition (1.4) and the elemen- 

(1.20) 

Thus operator LolBo = L;‘B,J is absolutely continuous in Hz. According to Fred.- 
holm’s theory for Eq, (1.18) (or Eq. (1.14)) to be solvable it is necessary and sufficient 
that the related homogeneous equation has no trivial solutions. An expansion into 
Fourier series readily shows that the Latter condition is the same as the condition of this 
Lemma, which completes the proof. 

Lemma 1.2. The set of such o which correspond to nontrivial k-periodic solu- 
tions of Eq. (1.5) from any sphere 11 v llH, < r is bounded by the number depending 
on r, 11 a&,~) and on region 52. 

Proof. Let v’be a nonaivial In-periodic solution of Eq. (1.5). We assume that 
an 

v=v”+u, v+ r V(T) clr 
i 

(1.21) 

The vector function u satisfies equation 

o (du/dr) + Aou = -K (v” + u) + Ko (v’ + u) - Bu s g (u, v”) 
(1.22) 

2s ca 

h-o(v"+ u)= & s KW + u)d% Bu = 2 i3kBku 

0 k-o 

From the definition (1.21) of the vector function u follows the estimate 

llullIf,6livII,,, (1.23) 

Integrating in both parts of Eq. (1.22) the scalar squares in H with respect to v.from 0 
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to 2n: , we obtain 

J,E 7 

Using inequality (1.21) and the elementary inequality 

(1.24) 

(1.25) 

for the estimate of the right-hand side of (1.24). we obtain 

J, Q 5~0~ II ullh,’ r [v2 (rot u)2 + ua (rot v)2 + u’ (rot @I dz (1.26) 

h 

In what follows we shall need the imbedding inequalities 

o<y2;n II v (r) IIH‘ < Cl II ” IIf& l/ v l/L,,(Q) + 11 rot ’ k,:,,(Q, < ‘ztv li& 

Q = QX[f!, 2.71 

(1.37) 

where constants Ed and cI depend only on region s2. To prove the first of inequalities 

(1.27) we have to examine the identity 

using the inequality 

from (1.28) we obtain 

(1.28) 

(1.29) 

Multiplying both sides of this inequality by e %*l and integrating with respect to 1 from 

-QO to ‘F, we obtain + 

eAitT I/u (T) ljH; < 2 
s 

c”‘~” ‘p2 (t) dt (1.30) 

The right-hand part of (1.30) can be presented in the form 

&” gz (1) dt = 
&’ (t - 2n) 2n 

c 
’ - e-2nA” ‘0 

e’(“v* (5 + s) ds 11.31) 

This yields directly the necessary inequality ; constant Cl ‘can be taken as equal to 
2 (1 - ,-anAfit)-l. 

The second of inequalities (1.27) is derived in the manner given in [19]. 

We shall also require the multiplicative inequalities 

II rot u II+ lnj $ c3 II u ~&y-ii hi I@, il I* IIt, cn, < CI 1141 :lJ’“d u II’h: (1.32) 

Finally, we note the inequalities 
II u l& < l/o’! J 01 IIU IV 1 J II,’ G w 0 (1.33) 

valid for any vector function u E Ii,; 11” = 0 

To prove these it is sufficient to expand the vector function u into a Fourier series, 
use the Parceval equality (1.19). etc. 

Let us revert now to relationship (1.26) and successively estimate the terms in its 
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right-hand part. 

Using the Hider inequality together with the first of inequalities (1.32), we obtain 

?n 2% 

\ s do v* (rot u)’ dz 6 as II v it, (Q) [S #u&yQAoul&dr “’ 1 (1.34) 

'0 n 0 

Using once again the Htilder inequality, we derive 

Finally, making use of inequalities (1.27) and (1.33) for the estimate of the right-hand 

side of (1.35), we obtain 

F 

\ s 
d% v” (rot,u)* dz 6 % J,, Cl = CI 

, 2 ‘it 
cs 5 (i.36) 

'0 a 
I/o 

Inequalities 
V 

s s 
d% us (rot v)’ dz < csr” J,, t 1 ‘lb 

If@ 
ca = c4 es Cl (1.37) 

0 n 
2rr 

I \ 
’ dr ’ uz (rot u)~ dz’< z J, 

vu 
(1.3 

0 i-l 

are derived in a similar manner. Use was made of (1.23) in the derivation of inequality 

(1.38). 
From (1.26). (1.33) and (1.36)-(1.38) we obtain 

i.6 (1.39) 
. 

This yields the estimate of CO 

o 6 ‘;c (cv’ + vc,*r4 + 20~0~)’ 
Lemma 1.2 is proved. 

(1.40) 

It follows from Lemma 1.2 under conditions considered here a fast cycle cannot occur. 
This is closely related to the fact that the intersection of the spectrum of the Navier- 

Stokes operator with any straight line parallel to the imaginary line is limited. It would 
be interesting to know the conditions under which the general equation (1.5) can have 
a fast cycle. One of the predominant factors inducing the onset of a fast cycle is appa- 

rently the property of the spectrum*of the linearized operator A to have as its limit point 

an infinitely distant point of the imaginary axis. It is possible that fast cycles of a cer- 

tain kind occur, also, in the case of Navier-Stokes equations, but only when y. = 00, 
i.e. when these “branch out” from flows which remain stable at any Reynolds numbers. 

The plane Couette flow, the Poiseuille flow in a round tube (although nobody has so 

far given a strict proof of this), and stable rotational streams 117, 181 are examples (of 

such flows). In our opinion it is this that explains the low stability of such modes at 
high Reynolds numbers, although it seems possible that at infinitely high Reynolds num- 

bers other modes, such as stationary or almost periodic, merge with these flows. 
The following analysis relates primarily to normal cycles. 

Lemma 1.3. Branching out points of a cycle can only correspond to critical values 
of the parameter. Let y,, + y. and (On + tooand the related nontrivial solutions Y, of 
Eq. (1.5) tends to zero by the norm of I{s.There is then among the numbers 
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r inro, (m = 0, 1 . . .) at least one belonging to the spectrum of operator A. 
Proof. This will be made by contradiction, Let the Lemma be untrue. By assuming 

61 = o. i- P we reduce Eq. (1.5) to the form 

(1.41) 

Operator M continuously maps space H, X R X R (the space of the set of three 
v, P, 8) into N’. For v = 0 and IJ = d = 0 its Frechet differential is the operator L 

which by virtue of Lemma 1.1 is invertible. By the implicit function theoremEcL(1.41) 

for sufficiently small u and 6 is only satisfied for v = 0, which contradicts the assump- 
tion that y. is a point of branching out of a cycle. The Lemma is proved. 

The problem is thus reduced to finding the conditions sufficient for a given critical 
value of the parameter to be the point of branching out of a cycle. 

2. Thr rqurtfon of branching out, Let us first consider the problem of 
determining the periodic solution of the nonhomogeneous linear equation and derive 

the condition of its solvability. 
Lemma 2.1. Let operator A have at the imaginary axis a pair of simple eigen- 

values Tie ,, (0 ,, > 0) with regular remaining points of that axis, For the existence 

of a 2n-periodic solution of equation 

coo $ + Au = f (t), fEH’ 

it is then necessary and sufficient that condition 

‘T (f (z), a’) e-“ciz = 0 

(2.1) 

,(2.2) 

is satisfied. 0" 

Pro o f. The necessity of condition (2.2) is checked by the simple calculation: if 
Eq. (2.1) is solvable, then according to (2.1) and (1.10) we have 

2% ar 

s 
(f(r), dD) e+dt= 

s 
(u (T), A*@ - iwD) 8’ dr = 0 (2.3) 

0 0 

Let us prove the sufficiency. Let u,(A), u, (A) and u_ (A) denote the parts of spectrum 
a(A) lying on the imaginary axis within the right- and the left-hand half-planes, respec- 

tively. We denote by P,, P, and P_ the related projectors 

1’ 
i 

Q”2ni ,. \ (Al- A)-‘dL P, = & \ (AI - A)-‘dh, I’_ = I - Z’o - I’, (2.4) 
I* s+ 

Here l’, and l’+ are smooth contours lying in the bounded part of the complex plane and 
consisting of regular Points only of operator A. The region bounded by the contour 
Fr (F,) contains the set a,(~+) and does not contain any other points of the spectrum 

o(A).The derived projectors commutate between themselves and with operator A. 
We seek the solution of Eq, (2.1) in the form 

” (T) = IJn (T) + u+ (T) $ u_ (7) un = f%u; uzf = .Prf u (2.5) 

Vector functions u-+ are found from equations 

f, = Pq_f (2.6) 
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Tt will be readily seen that these equations are solvable and 
r 

u, (‘c) =$- s c 
-$ (+r)A 

m /+ Wdb u_ (?I =+s e 
+-,)A 

j_ (8) ds (2.7) 
AYO 7 

The vector function u0 is of the form 

Uo(r)=c(z)~+c+(r)cp* (2.3) 

Function a(r) satisfies equation 

The latter can be rewritten as 
d 

mdre 
-{* a (z) = e-” (f(T), @)a (2.16) 

Condition (2.2) implies a 2n -periodicity of function a. The following Lemma estab- 

lishes the condition of solvability of Eq, (2.1). 

Lemma 2.2. For a &r-periodic solution of Eq. (2.1) to exist it is necessary and 
sufficient that condition s= 

s 
(f (z), a) I+ dz = 0 (2.11) 

be fulfilled for any eigenvectot <t, of the conjugate operator A* to which corresponds 

the eigenvalue inoo .where n. is an integer. 

Proof. The proof of necessity is exactly the same as in Lemma 2.1. To prove the 

sufficiency we apply the Fredholm-Riesz theorem to the equivalent equation (1.18) . 

Using relationship (u, v)J& = (Lou, Llv),, (2.12) 

we readily conclude that the related conjugate homogeneous equation is of the form 

v +&-‘&*-’ &#+L(v = 0 (2.13) 

Operator &,*: Hs -VW is defined by 

&“v E - 00 $$+ Aov (2.14). 

It should be noted that operator Lo*-’ Bo* admits absolutely continuous closure in II’, 
since along the dense line manifold III’ in II’ it coincides with the conjugate operator 

i+ t;’ = &.lL-~ absolutely continuous in H’ (see proof of Lemma 1.1). 

Assuming 1,“’ = 7. we see that vector function rp satisfies equation 

- 00 d$ + Aoql + zL)+qJ = 0 (3.15) 

If, on the other hand, CF; is a ZJC -periodic solution of Eq. (2.15). v = L,‘$ satisfies Eq, 

(2.13). 
The condition of solvability of Eq. (1.18) is of the form 

(uo; ‘)I& = (f, L”V)H,_ (f, e)n, = u (2.M) 

for any 2.7 -periodic solution g of Eq. (2.15). The expansion into a Fourier series shows 

that the latter is a linear combination of solutions of the form e”“cl) , where n is an 
integer and Q, is the solution of equation 

- iflW+I) + A*@ = 0 (2.17) 

Hence condition (2.16) is equivalent to (2.11) and the Lemma is proved 
Note that the Lemma can be extended to the case in which operator B,.is time- 
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dependent (let us say continuously by the norm Ht’ -+ H’); this requires only the sub- 

stitution of condition (2.16) for (2.11). 
Let us consider Eq. (1.5) or (1.41) in which 8 is a known and 11 an unknown small 

parameter. We assume that the intersection of the spectrum of operator R with the 

imaginary axis consists of a pair of eigenvalues Fio s (0 ,, > 0) which we shall con- 
sider to be simple (numbers) ( l ) . 

We seek the vector function v in the form 

v (t) = u @) + ad*q + a*+g* 

Constant a is uniquely defined by setting 
ax 

s 
’ (ti (T), O)He-tr d7 = 0 

0 

(2.18) 

(2.1Y) 

Since Eq, (1.5) does not explicitly contain time, it has in addition to the periodic 

solution v the periodic solution vh defined by v,, (z) = v (7 + h) for any real h,,We 
define phase h by specifying a positive constant a.(otherwise it would have been suffi- 

cient to pass from v to vh with h F -arg a). Thus solution v may be sought in the 
form 

V=u+ag, 9 F e!Q# + e+p*, a>0 (2.20) 

where u satisfies condition (2.19). Substituting (2.20) into (1.41). we obtain 
(2.U) 

Du~~a$fAu=-~ $-pga- i*‘B,(u.+a*)+K(u+a$) 
k-i 

We denote by H,O and H,’ the subspaces in HI and H' defined by condition (2.19) 
and consider D as the operator from Ha” into Ii,‘. By virtue of Lemma 2.1 (or 2.2) 

there exists the inverse operator D-r. 
let us denote by P the projector in H’onto the subspace Ho’ 

an ax 

Pu = u - (pe*‘& 5 (u(s), q) &#ds - (p*e-iV -& 1 (u (s), a*) e”ds (2.22) 

0 0 

The problem of determining u and a from Eqs. (2.21) and (2.19) is equivalent to the 
following: 

The right-hand side of Eq. (2.23) represents a continuous operator in Hs” , analytically 
dependent on 6, a and Jo , and vanishing for 8 = a = p = 0. Hence, according 
to the implicit function theorem, Eq. (2.23) can be solved for II. In the neighborhood 
of pint (0, 0, 0) this solution is analytically dependent on 6, a and-p and is uniquely 

l ) It is not difficult to construct the system of equations for branching out in the gen- 
eral case. 
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defined by the condition that U. = 0 for 6 = a = p = 0. It can be readily found 
by the method of ~de~rrniRed coefficients by ~ubs~tu~g into (2.23) expansion 

00 

U= 2 Uklm~k&m; uooo = 0 (2.25) 
LJ,mato 

We thus find that the first power terms UtQo zs Uoro E uIter = 0 are absent in (2.25). 
that naOO = ulol = U,it = Uoo2 = 0’. and that among the terms of second power 
Only Urro and uDzo can be nonzero 

"no,' - D-'PBl~, q+d-flP'K~=D-fK~ (2.26) 

Let US write down the coefficients of the third power terms 

Us00 = usst = uras = l&Us = UsfJj = 0 

ho = - ~-l~~~~u~~* + Wh Go = D--y- ~,uoao + ~~~~u~~o*~)) 

Ulll =f - du,,,/dt, uoc = ~z,o,(uozoc 9) 

um =, .-*!&~ (2.. 27) 

As an example we also write the expression for the coefficient U,U~ 

uo40 = D+P (X20@ (uom* u&l -I- &no @osor 4% (2.28) 

Generally for the coefficients uorO (1 = 3, 4, l .+I 7 have 

U@rs = D-‘P (Ks< (%*z-l,O, 9) -+- 2 ~~~O(~~O, w-d (2.29) 
r=a 

We also note that ukOm = 0 (k, m = 0,1, . . .). In fact, the sought solution of Eq. 
(2.23) obviously vanishes for a = 0 . 

Substituting now the expansion i2.25) into (2.24)‘ for the branching out rwe obtain an 
equation of the form 

g (6, 01, P) = 0 (2.30) 
Here g is a complex-valued function, hence (2.30) is a system of two equations with 
two unknowns a and p. Function g is analytic with respect to 6, tr and [I in the 
neighborhood of point (0, 0, 0), and its expansion into a Taylor series is of the form 

m 

g&a+)= k’ ~~Mg,t,6Ra’PS g&tm = (fklntt (Det*)H’ (2.31) 
I + 

where f,,.l,,, is the coefficient of 8ku~~~m in the Taylor expansion of the expressions in 
brackets in (2.23) and (2.24). It will be readily seen that g is an odd function of the 
variable a: the substitution ‘G + ‘c f 3t and a -+ - a does not alter Eq. (2.23). 
while the left-hand side of Eq. (2.24) turns into its inverse number. 

Taking into consideration (2.25)-(2.28), we can now write the equation of branching 
out,(2,30) as 

g(6, a,@= - 2niav -&t(B19, <DeQ - 6za(B1u,,o + B,$,, @ei’)an + 

+ a3 (KaOo(U620r S), @e% t - - . = 0 f2.32) 

where terms of fourth and higher powers of 8, a and p have been omitted, The coef- 
ficients in Eq. (2.32) can be reduced to a simpler form by inte~ati~ with respect to 
time. We have, for example, 
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g110 = - (B,$, ‘Ih?“)H~ = - s (B,cpcftf Blcp*ei*, CD), e%h = - 2n (B,cp, @)a 
0 

(2.33) 

6210 - --2~t(~,cpA'h + ~J+WV',)H (2.34) 
where vector Wis the solution of equation 

(A + iwoO W = B,cp - (B,(P, (1’)~ cp, (W, CD), = 0 (2.35) 

It follows furthermore from (2.26) that the vector function uosO is of the form 

tbzo =‘zo + 2~s~~ + z*e-sif (2.36) 
where vectors x,and z are defined by equalities 

a, = @K2o”(cp, ‘p*j (2.37) 

1. = (A + 2&J)-‘KS0 (cp, cp) (2.38) 

With the use of expression (2.36) we obtain 

go30 = 2-c $20” (20, 9) + K200 (2, cp*j, %f (2.39) 

The analysis of the branching equation makes it possible to determine the number of 
branching out cycles and establish their analytic properties with respect to parameter 6 

(for each of these a and l.t, and by virtue of (2.25) also u, are series expansions in frac- 
tional powers of parameter 6). 

The following theorem specifies the conditions which make it possible to establish 

the existence of a cycle by an analysis of linearized equations only. 

Theore m 2.1. let y. be the critical value of parameter y, and let operator A (see 

(1.4)) have a pair of purely imaginary simple ( l ) eigenvalues F io o # 0. 
Let there also be no eigenvalues of operator A among the numbers ino (n is an inte- 

ger and rt # r 1) , and let the following condition be satisfied : 

Re @,cp9 % # 0 (2.40) 

Then YO is the point of the branching out of a cycle. There can be only two possibilities 

in this case : either we have a single normal one-sided cycle, or Eq. (1.5) has for y=Yo 

and (L) = (~)a a one-parametric set of &t-periodic solutions {v,} with vo=O analyti- 
cally dependent on the small parameter a, and, if at the same time y - TO is fairly 

small but not zero, Eq. (1.5) has no small periodic solutions. 
Proof. By cancelling in (2.32) 2na, we obtain equation 

h(b, az, p) s ip + (B,rp, O),d +... = 0 (2.4i) 

where terms containing 6, a and CL of powers higher than the first have been omitted. 
Assuming Re h = h and Im h = hi and calculating the Jacobian, we obtain 

a ($ hi) I =Im Et!!? 
a (h P) a=rl+Go ap a6 I a=+.l=o 

= Rc (Blcp, @)a # 0 (2.42) 

l ) We recall that this implies not only uniqueness of eigenvectors q and c.* correspond- 
ing to eigenvalues - io, and io, but, also, the absence of adjoint vectors, which leads 

to the condition (7, UI)~ # 0 (see (1.11)). 
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Using the implicit function theorem, we conclude from this that Eq. (2.41) can for suf- 
ficiently small Ial be solved for ij and p. since there exist analytic functions 6 = B(a*) 
and p= p (a2) which reduce (2.41) to an identity and are uniquely defined by the s& 

pulation that 8(O) = p (0) = 0. 
Let us take an arbitrary sequence of positive numbers a, - 0 and construct the cor- 

responding sequencies 
a n = fJ(am2) H 0, Pn = da,.? - 0, on = oo+ Pn 

Then the series (2.25) yield the related solution of Eq. (2.21). and formula (2.20) that 

of Eq, (1.5) which is obviously nontrivial, since a, > 0. This proves that yo is a point 
of ‘branching out of a cycle. 

If the left-hand side of Eq. (2.41) is independent of a, then the unique small solution 

of that equation is obviously p = 8 = 0. In this case parameter a remains arbitrary 

and, if it is sufficiently small, the series (2.25) is a solution of Eq. (2.23) for b = y = 0. 

Thus in this case the second of the possibilities noted in Theorem 2.1 is realized (0). 
Let now the left-hand side of Eq. (2.41) depend on a. We expand function 0 into a 
Taylor series and try to solve the equation 

a = 8 (a*) = c,asm + cm+laa (m+l) + . . . (2.43) 

for a at small F . 

wk assume that c,,, # 0 and nz > 1. If cm > 0 (cm < 0), Eq. (2.43) has a unique 
small positive root a ford > 0 @co) and has no small real roots for d < 0 (a > 0). 
In both cases we have 

a= (5)“” [i- -:c:i ($-)Um +...I (2.44) 

The square brackets contain the series expansion in powers of parameter (dlc,,,)‘~‘“. 

To prove the expression (2.44) it is sufficient to apply the implicit function theorem 
to the equation derived from (2.43) by dividing it by cm and extracting a 2m-th power 

root from both of its sides. 

Thus the uniqueness and one-sidedness of the cycle are established for this case . 

Since ofi = oo.+ pn -. o, , this cycle is obviously normal. Theorem 2.1 is proved. 

A moie detailed investigation into the existence of small cycles, their number, and 
analytic properties must take into consideration the nonlinear terms. A typical and one 
of the simplest cases are described by statement that follows. 

The ore m 2.2. Let all conditions of Theorem 2.1 and the inequality 

Reg,,,= Re (KzDo (uozO, $1, @e’*)Ht + 0 (2.45) 

be satisfied. Then YO is the point of branching out of a single one-sided cycle which 

exists for small d > 0 (d < 0), if Re go,, / Re g,,, < 0 (> 0) , and is an analytic 
function of parameter I/J (1/ - 6) , and p is an analytic function of 6, 

We then have 
i 
‘A + 0 (6) 

p = & 6 (Im g,,, - Rwllo SW) -I- 0 (ha) (2.46) 

l ) This case is obviously exceptional. It can, for example. occur when iiq = 0. Whether 
this is possible in the case of Navier-Stokes equations is not known. It is not difficult, 
however, to give examples of nonlinear operators with this property. 
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Magnitudes g,,o and goso are defined by equalities (2.33) and (2.39). 
Proof. Reverting to Eq. (2.41) and writing the expressions for terms containing 6, 

a3 and ~1 of the first power in an explicit form, we obtain 

h (6, a2, p) G ip - & 0X+&- g080az+...=0 Gw 

Equation (2.47) can be solved for a1 and p , since there exist functions as PI c(b). and 
p = q(a) which are analytic at point 8 = 0, reduce Eq. (2.47) to an identity, and are 

uniquely defined by the stipulation that c(O) = q(O) = 0. This follows from the implicit 
function theorem, since condition (2.45) implies the inequality 

a (hr* ‘i) 
-- 

a (a2, c’) I 
=Irn ah m* 

a&=0 acr CJaz I arbFo 
~IDiigm0=Reg0ao#O (2.48) 

From (2.48) we further have 

4’ (0) = - z * tl’ (0) = & Im go0 + &- Im gO30 E’ (0) 

from which immediately follow the relationships (2.46). Thus Theorem 2.2 is proved. 

The branching equation (2.32) can be readily analyzed for various exceptional cases. 
In fact, according to the implicit function theorem, p appearing in equation h, (6, a2, 

p)= 0 can be expressed in terms of a series expansion in powers of 6 and a2, since 

WtL&t (0, 0, 0) = 1 # 8. Substituting this expansion into equation h, (a, ai, 

cl) = 0, we obtain equation f (6, a") = 0. A complete analysis of the latter can be 
made with the use of the Newton diagram. Fdjr example, it can be readily shown in 

this way that under conditions of Theorem 2.1 with He goso = 0, but 

Re go60 E Re (K20’ (U040, $) + 2K220 (uo20, ~~2~)) @e")p + 0 (2.49) 

a single normal one-sided cycle analytically dependent on &la or (-s)‘/a branches out, 

while ~1 is analytically dependent on 811 or (--6)“: and 

a= ( - p.$!c! 6>‘” + 0 (C) (2.50) 

p = &w030 
( 

_ !k&jj'/*+ & tj(rmg,, - :z Im g060) + WV 

Let us also consider the case when -Re g,,, = 0 and condition (2.40) are not satis- 
fied. We eliminate p from Eq, (2.47) by substituting for it its expression in the form of 

a series expansion in powers of 6 and a2 

fJ ==&Img,,,6 +i$mgosoa2+. . . (2.51) 

where terms containing 6 and a2 of powers higher than the first have been omitted. For 

the determination of cz we obtain equation 

Re g0s0a2 + Reg,,,G2 + . . . = 0 (2.52) 

where terms containing 6 and a of the third and higher powers have been omitted. It is 
now obvious that there are no small cycles when 

no go30 negzIO > 0 (2.53) 

This completely explains the role of condition (2.40) in Theorem 2.1. With all 
other conditions of the theorem satisfied,this condition is necessary and sufficient for 
the critical value TO to be the point of branching out of a cycle for “arbitrary” purely 
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nonlinear operator .K and linear operators BI and B,. 
If instead of (2.53) the opposite inequality 

Mh30Reg210 < 0 (2.54) 

is valid, then it follows directly from (2.52) that there exists a unique normal two-sided 
cycle for which 

8. E xt8naioa. In the foregoing analysis the properties of the Navier-Stokes equa- 
tions were used to a small extent only, hence an extension to a fairly wide class of ordi- 
nary differential equations in a Banach space is not difficult, This class of equations 
includes numerous problems of mathematical physics such as, for example, nonlinear 
parabolic equations, equations of magnetohydrodynamics, etc. We would note that the 
assumption of analyticity with respect to parameter 6 , as well as that introduced below 
on the analyticity with respect tou , need not be strictly adhered to: it is sufficient to 
specify only a few continuous derivatives (in the case of Theorems 2.1 and 3.1 only the 
iirst derivatives need be continuous). 

Let us derive the nontrivial &t-periodic solutions of the ordinary differential equation 

U% + Av = K (v, 6) (3.1) 

in the Banach space X on the following assumptions. 
1) A is a linear operator generating the operator of the semigroup. The intersec- 

tion of its spectrum with the imaginary axis consists of a pair of simple poles Tie) a #O. 
We retain the previously used definitions (1.6) and (1.10) for the eigenvectors of 

operators A and A *. 
Let wp be the Banach space of the &t-periodic vector function of parameter r 

whose values in X have the finite norm 

Here p > 1 is a certain number. 
2) We assume that for any o F o o and f E L, (IO, 21x1, X) equation 

o-$Au=f (3.3) 

has a unique 2n-periodic solution u = L,f , and that operator L. continuously acts 
from L,([O, 23x1, X) into W,(coercivity). 

3) For any sufficiently small 6 the nonlinear operator K acts absolutely continu- 
ously from W,into Ln ([O, 2rtl, X) and in the vicinity of the zero of space X X R 
is analytic with respect to the set d, 6. Let its expansion into a Taylor series be of the 
form 

K(v, 6) ‘= i i KmnurnjY, Kl@ = 0 (3.4) 
-1 n==o 

The following notation is used here: 

KmnP = Krnn(v, v, . . L ) v) 

where k’,,, is a linear operator with respect to each of its arguments. 
Let us set K In = -B, (n = 1, 2, . ..) 

(3.5) 
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In the case of the Navier-Stokes equations considered above X = H; p = 2; 
W, = H,; B, and IL’,, 
I< 

are defined by equalities (1.4). and the remaining operators 
mn are equal zero. 

Conditions l-3 make it possible to extend the previously derived results to the general 
case. Since the proofs remain the same, the subject reduces to a branching equation of 

the form (2.30). Hence we confine ourselves to the formulation of the theorem. 
Theorem 3.2. Let conditions 1-3 and 

Re (Br rp, W # 0 (3.6) 

be satisfied. The 6 = 0 is the point of branching out of a cycle. and we have either 
a unique normal one-sided cycle, or for 6 = 0 and o = o t,;Eq. (3.1) has a set of 2% 

periodic solutions {Us} with us’= 0, while for small 6 # 0 there are no nontrivial 

2st -periodic solutions ( l ) . 
The ore m 3.2. Let the conditions of Theorem 3.1 and the inequality 

Re go,, = Re (&a’ (cp, zo) + KsOo (rp*, 2) + &so (cp, rp, q*), @) # 0 (3.7) 

K,ll”(u, 11, 0) = K,, GJ, fJ, 4 + K30 b, v, u) 4 K30 b-4 u, 4 

be satisfied. Then 6 = 0 is the point of branching out of a unique normal one-sided 
cycle which is an analytic function of parameter fl or 1/--6, an& p = tc - w. 
is an analytic function of 6: In this case 

V= ( -p2J%)+O(6) 

P = & 6 ( Irn gna’ Im gl10 - Re gll0 ~egow > 
+ 0 (iY) (3.8) 

The conclusions presented at the end of the preceding Section are, also, valid in the 

general case, although the expressions for coefficients gel,,, become somewhat more 
involved. 
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